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Probability Densities for Noisy Delay Bifurcations
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The delay of a transition in a nonlinear system due to a slowly varying control
parameter can be significantly reduced by very small noise. A new asymptotic
approximation for the time-dependent probability density function gives a
complete description of the process into the transition region, and is easily
interpreted in terms of the noisy dynamics. It is also used to calculate mean
transition times. The method is applied to two nonlinear systems with noise:
a one-dimensional canonical model for a steady bifurcation and the noisy
FitzHugh-Nagumo model.

KEY WORDS: Probability density; Fokker—Planck; delay bifurcation;
FitzHugh—Nagumo; noise; slowly varying.

1. INTRODUCTION

It is well known that the slow variation of a bifurcation parameter through
a critical point can delay the transition to a new state.'> Then the transi-
tion takes place at a value of the bifurcation parameter which is far from
the critical point. This delay is attributed to a memory effect, in which the
system “remembers” the previous state that it was in. Several studies have
shown that external oscillations or noise can reduce or eliminate the delay
in the transition to the new state, thus affecting this memory of the
system.(®"!?) In particular, small oscillations have been shown to advance
the transition significantly in both steady® and Hopf bifurcations,® as
well as in passing through a resonance.’? Quantitative predictions about
these transitions provide a characterization of the sensitivity of these
systems to noise. The probability density function can be used to make
these predictions.
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In this paper we study two systems of the form
dx=a(x, 1) dt +./2 e AW (1.1)

where W is a vector of independent Brownian motions, and ¢ is a measure
of the magnitude of the noise. When ¢ =0, the system dx/dtf =a(x, ¢) has a
delay bifurcation, and for 0 <e<<1 this delay is reduced by an O(1)
amount. This effect is demonstrated by the simple example of Section 2.
Since the dynamical system with noise (1.1) describes a stochastic process X,
it is natural to look for the probability density function p(x, ) since it
holds all of the information about the process. The time dependent prob-
ability density function is the probability that the process takes a certain
value at a certain time,

p(x,t) dx=P(x(t)e(x, X+ dx)) (1.2)

This function is used to determine moments of the process x and the
moments of the time until the process makes a transition. The density
p(x, t) satisfies the Fokker—Planck equation (FPE)

@=82V2p—V~(ap) (1.3)
ot

Previous studies look for measures of the effects of the noise in these
problems. Even though the probability density function holds all of the
information about the process, these studies do not try to find this function
for the nonlinear delay bifurcation problems with noise, perhaps because
there are several difficulties in solving (1.3). The underlying noiseless pro-
cess is described by a non-autonomous system, so that there is no steady
state solution, and the full time-dependent equation must be solved. In the
case of small noise (¢ << 1) the probability density function can be densely
concentrated in one region so that it has sharp gradients. Then numerical
methods can be inaccurate or expensive, and it would be preferable to use
an asymptotic method based on the small diffusion, such as a WKB expan-
sion. As shown in the following sections, for noisy delay bifurcations the
probability density function can vary in shape over time. For some time
intervals it is sharply peaked and at other times it is concentrated over a
larger region and the gradients are smaller. Then it is necessary to deter-
mine when and where the asymptotic methods are valid.

In this paper we approximate the probability density for delay bifurca-
tion problems with small additive noise. The method is based on a
Gaussian-type ansatz, similar to that used for the invariant probability
density for a chaotic system.!®) In this paper we interpret the behavior of
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the density in terms of the dynamics of the system and use the approxima-
tion to find the time at which the transition takes place, since it is valid
into the transition region. The method has some useful features which are
worth emphasizing.

1. The form of approximation for the density reduces the problem
from that of solving the partial differential equation (pde) (1.3) to that of
solving a system of ordinary differential equations (ode’s). Thus the com-
putation is much faster.

2. From the form of the density, which is of Gaussian-type, one can
easily interpret the density in terms of the location of the transition region.
This information is directly related to the region where the probability den-
sity is valid, so that it is clear where the asymptotic approximation can be
applied.

3. The asymptotic approximation gives the dependence of the
dynamics on both the size of the noise and the other parameters in the
model, such as the slow variation of the bifurcation parameter. Then the
parametric dependence of the transition times, computed using this density
function, is known also.

We briefly illustrate these points with the form of the density for the
one-dimensional example studied in Section 2,

p(y, 1)~ C /g1 o — (¥ —F() —(2e//2,)) (8(1)/2¢2) (1.4)

Here y is the stochastic process, F(z) is the solution for the deterministic
problem (e.g. (1.1) with ¢=0), g, and g(¢) are functions that are deter-
mined by substituting (1.4) into the FPE, and C is a normalizing constant.
This substitution yields an ode for g(z), which naturally includes the
parameters of the original model. The function (g(¢#)/¢?) ! is analogous to
the variance for a normal random variable, so if we can find g(z) we can
see how much the process y varies about the perturbed deterministic
behavior described by F(7) + 28/\/; . When the function g(t)/e? is small the
density no longer has sharp gradients. The form of the approximation is
based on the assumption that the probability is densely concentrated in
some region, so that the validity of the approximation is limited to values
of g(¢) which are not too small. In addition to giving insight into the
dynamics of the process, the approximation for the density is used to
calculate the mean transition time for the process.

We apply the method to two different models with delay bifurcations.
In Section 2 we demonstrate the method for a one-dimensional model
which has a steady bifurcation. In Section 3 we apply the method to the
FitzHugh—Nagumo model which has a Hopf bifurcation. In both cases we
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approximate the probability density for times into the transition regions,
interpret the density in terms of the dynamics of the process, and use the
density to calculate the expected time of transition. The asymptotic approx-
imation is compared with the numerical solution of (1.3) to demonstrate its
validity into the transition region. In this paper we focus on the use of the
asymptotic approximation, and refer the reader to ref. 15 where the compu-
tational issues for solving (1.3) are discussed in detail.

We conclude this section by mentioning related work. The effect of noise
on the delay bifurcation is related to the phenomenon of stochastic
resonance, where additive noise in a subthreshold excitable system can cause
a transition to super-threshold behavior (see ref. 16 and references therein).
Quantities such as signal-to-noise ratio, power norms, which involve the
mean and variance of super-threshold incidents, and power spectral densities
are used to measure the effectiveness of the noise in this phenomenon. The
probability density for the dynamics, which are of the type studied in this
paper, could be used to calculate these measures of stochastic resonance.

The method used in this paper differs from that of the WKB-type
expansions used in refs. 17 and 18, for example, where substituting p = eV
into the FPE yields the Hamilton—Jacobi-type equation

U, =2V + |Vy|>—a-Viy —e*V-a (1.5)

The method of this paper is, in effect, solving (1.5) approximately with an
appropriate quadratic function for iy based on the underlying deterministic
dynamics. The advantage of the approximation (1.4) is that it is easily
interpreted in terms of the dynamics of the system and the density can be
found with fast, straightforward computations. A limitation of (1.4) is that
it is not valid for all regions of space and time, but it accurately describes
the effect of the noise on the transitions in these problems. This is the most
interesting part of the dynamics, since after the transition the small noise
has very little effect on the dynamics.

Probability densities and mean transition times have been computed
for linear models with noise.® The models which are considered here are
nonlinear. Even though they can be approximated by linear models in
some regions, we do not use linear approximations, since this would intro-
duce errors which would obscure the effects of the noise.

2. THE ONE-DIMENSIONAL MODEL WITH A STEADY
BIFURCATION

We consider the one-dimensional problem,

dy=(uty—y*)di+/2edW,  y(tg)=y,, O<e<<u<<l (21)
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which models the effect of very small noise on the delay in steady bifurca-
tions, for W a standard Brownian motion. We review the behavior of the
solution of the deterministic problem

d

ly
E=/ﬂy—y3, y(to) = Yo (2.2)

This equation has been studied in ref. 8, as a canonical model of the
delay of a steady bifurcation which occurs in lasers. Many models with
similar behavior have been discussed in refs. 19 and 20. If ¢ is replaced
by a constant 7, in the right hand side of (2.2), there are two steady
state solutions y; =0 for all T, and y,=(uT,)"? for Ty>0. For Ty>0
the solution y, is stable. That is, there is a steady bifurcation from the
zero solution y, to the solution y, = (uT,)"? at the critical parameter value
To=T.=0.

Now consider (2.2), where ¢ is the time variable. For values of 7 << 0,
y(t) decays exponentially and for > 0, y(¢) approaches y(t) = \/;;, so that
the value 1 =0 plays the role of a critical point. For ¢, <t <0 the solution
y(t) approaches zero, and as ¢ increases so that > 0 there in an O(1) inter-
val of time during which | y(¢)] << 1. At a time such that \/ur = O(1), y(t)
grows rapidly, eventually approaching y(t)~\/,L;. This is known as a
delay bifurcation, since as the coefficient u¢ varies slowly through the criti-
cal point =0, the solution does not immediately make the transition to
the state y(¢) ~ \/,L;

The explicit solution for (2.2) with ¢=0 is

2
et

= =F1) (23)
21 e dr + C

y3(1)

where C =e”’<2>/y§ is determined by the initial condition y(z,)= y,. This
solution has the behavior described above, that is, that y(¢) approaches 0
for <0 and y(¢) ~ \//; for large ¢. Figure 1 shows the solution of (2.2) for
yo<< 1 and ¢, =0, which shows the same delay in transition to y(¢) ~ \/p;
as in the case of yo=O(1), t,<0. Then without loss of generality, in the
following we take t,=0 and y,<< 1 for convenience,

Next we look for the probability density function, which describes the
effect of noise on the delay bifurcation. Previous studies considered the
reduction of the delay with the addition of sinusoidal oscillations.®
Numerical simulations of (2.1), as in ref. 21, demonstrate that the delay can
be reduced with the addition of noise (see Fig. 1).
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2.1. The Asymptotic Expansion

The probability density function p( y, t) for the process y described in
(2.1) is the solution of the FPE

pi=&p,,—((uty—y*)p),,  p(»,0)=po(y), &¢#0 (2.4)

Expecting that the noisy dynamics will be close to the deterministic
dynamics for ¢ << 1, we make the substitution

en=y—F(), p(y,t)dy=p(n,t)dy (2.5)

which transforms (2.4) into

1
b=~ LWtF(1) = FX(1) = F'()] p, + By

— (utn —3F2(t) n —3en’F(t) —&’n®) p, — (ut =3(en + F(1))>) p (2.6)

The coefficient of O(¢~!') vanishes by the definition of F(¢). Then the
leading order equation for the density is given by the coefficient of &°,

Do~ Doy — (utn —=3F(t) n) p,— (ut —3F(1)) p (2.7)
We look for a solution of the form
P, 1) ~Jg(t) e~ 1= C/e)? (g(02) (2.8)
Substituting in (2.7) for p(#, t), yields an equation for g(¢),

g'(1)
2

=g’ + (ut —=3F%1)) g (29)

which gives

e 20 g1

t)= - =
g(t) 2{0e22dt' + ¢, 2| g (') drl

(2.10)
o(1) =f ut' —3F(¢') dt

and

Py, t) ~C J/g(t) e~ = FO— o1z (2(1)/26) (2.11)
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In order to allow for the two possible deterministic behaviors, y = + |F(?)],
we then use the ansatz

P, 1) ~ C[ L Sa(1) e~ = FOI= /a2 (s
_,_% g(1) e~ +IF®)] —(28/«/5))2(g(t)/282)] (2.12)

Here the initial condition for p(y, ¢) gives the initial condition for g(#) (and
the constant c,) using (2.11). For example, in our calculations below we
take

1 2 2
Po(y) = e TWYED -y =107° (2.13)
0 \/2*7[ 0

so that g(0)=1.

The approximation (2.12) to the probability density describes the
effects of the noise on the dynamics. From (2.11) we see that the density
is sharply peaked about y= +|F(?)| +2£/\/; for g(t)>>¢% Then the
process y closely follows the deterministic dynamics + |F(¢)| plus a pertur-
bation 2¢/\/g,. Since |F(1)] <1, and in fact |F(1)| <./g(1)/e until the
transition occurs, the shape of the density appears to be a single peak. The
transition occurs when y varies significantly from =+ |F(¢)|. The function
(g(t)/e*)~" describes the spread of the density, or the variation of the
dynamics, about y=F(t)+2£/\/;. Thus the behavior of g(¢) is directly
related to the delay until the transition from |y|<<1 to y~ i\/p;.
A graph of \/g(t)/e is given in Fig. 2. As ¢ increases, ./ g(t)/¢ decreases, and

the density is less concentrated at y=F(t)+2¢//g,. When /g(t)/e is
small there is a larger probability of observing stochastic behavior which
varies significantly from the deterministic dynamics, that is, y — F(¢) =
O(1). The range of ¢ for which ,/g(¢)/¢ approaches zero corresponds to the
transition region in which y increases rapidly from y << 1 to y ~ \//E

We compare the asymptotic result (2.12) for p(y, t) to a numerical
solution of the pde using a gradient particle method.!> Recall that (2.12)
is a Gaussian-type approximation with a time-varying standard deviation
(\/g(t)/e)~'. Then, since Gaussian-type forms are generally good approxi-
mations when the probability density function is sharply peaked, it is not
surprising that the approximation loses accuracy in the tails when g(t)/\/é
becomes too small. Figure 2 suggests that, for x =0.01, e=10"% and y, =
105, the asymptotic expansion is valid until some time ¢ which is greater
than 30, since /g(¢)/e approaches zero there. In Fig. 3 we compare the
asymptotic result to the numerical solution of the pde (2.4) for =28 and
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Fig. 2. The graph of ,/g(¢)/e, which can be interpreted as the inverse of the standard devia-
tion in a Gaussian-type approximation as in (2.12). When this function is large, the probabil-
ity density is sharply peaked. Then the stochastic dynamics are close to the deterministic
dynamics. For small values of this function the density is no longer sharply peaked, that is,
the stochastic behavior varies significantly from the deterministic behavior, which corresponds
to the reduction in the delay until transition. The dash-dotted line is the result for u =0.02,
and the solid line is the result for 4 =0.01.

t =36. We see that these results are virtually indistinguishable at ¢ = 28, but
at t=36 the asymptotic result has a different shape and larger tails than
the numerical result. This illustrates that the asymptotic result contains the
information about its region of validity; the approximation is valid until
g(t)/e* approaches zero. In practice, the application determines the specific
range of ¢ for which the asymptotic approximation can be used for the
probability density. At the end of this section we use it to compute the
expected time until transition, and there we give the range of ¢ used in the
computation.

One observation for the behavior of g(¢) should be noted. It can be
shown from (2.10) that g(¢) > oo as t— oo, so that the variation is
approaching zero, and the density is strongly peaked about the center. Said
another way, as ¢ increases the deterministic dynamics dominate, so that
y(t) approaches the deterministic behavior for \//; >> 1 and the noise does
not play a significant role on these time scales. This is clearly what hap-
pens, as one can see from Fig. 1 and the numerical calculation of the prob-
ability density for larger values of ¢ in ref. 15. In this example g(¢) can be
used to indicate long time behavior qualitatively, but in general it can not
be used to quantitatively describe the behavior of the density for \//; > 1,
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Fig. 3. The probability p(y, t) for + =28 and ¢ =36, with £ =0.01 and &= 0.0001. The solid
line is the asymptotic approximation (3.6) and the dash-dotted line is the numerical solution
of (2.4)."5 Note that the asymptotic approximation differs in the tails of the density for large
enough 7. This is not unexpected, since in Fig. 2 the function /g(¢)/e is small for larger values
of ¢, in particular for > 30.

since the asymptotic method is not valid for values of ¢ near the end of the
transition region.

Using the asymptotic approximation for p( y, t) we calculate the expected
time 7 until the process y(¢) begins the transition from the solution y(¢) ~0
to y(t \F For 7 the time it takes one realization of |y(¢)| to exceed a
cr1t1ca1 point y., 7 is the mean of 7 over all realizations. This can be
expressed in terms of p(y, t) by

r‘:f% P(t>1)dt

0

=f " P(|y| <y, at time 7) dr
0

_j j}‘ 1) dy dt (2.14)

In Fig. 4 we compare 7 as computed from (2.14) with 7 from simulations
of (2.1). We choose an appropriate value of y. such that for |y| = y,, the
noise has little effect on the dynamics, and the transition takes place in a
deterministic manner. In order to give a quantitative description of y, it
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Fig. 4. Comparison of 7 for the deterministic and stochastic dynamics. The lines correspond
to the deterministic dynamics, where 7 is the minimum time such that y(7) > 0.01 (solid line)
and y(7)>0.1 (dash-dotted line) in the deterministic solution (2.3) with initial condition
»(0)=107% The O’s and +’s correspond to 7, as calculated using (2.14), with y.=0.01 and
£=0.0001 for the O’s, and with y,=0.1 and ¢=0.001 for the +’s. The O’s are the average
times until y >y, from 10,000 realizations of (2.1) with y,=0.01 and ¢=0.0001. The initial
distribution was (2.13).

can be viewed as an initial condition. For y(0)= y_, the difference between
the deterministic process and the stochastic process is negligible for all ¢, so
that the probability density is sharply peaked about the deterministic
behavior for all time and the function ./g(7)/e remains large. For the
results in Fig. 4, we have chosen y, such that \/g(¢)/e > 100 for all ¢, so that
y.=100¢. In Fig. 4 there is good agreement between the calculated value
of 7 (2.14) and the results from the simulations.

In the expression (2.14) the integral in ¢ is from 0 to co. However, the
asymptotic expression for p(y, t) is not valid for all time, as discussed
above. It is valid for a sufficiently long time 7> 7 so that contributions to
7 from [7 [*, p(y,t)dydt are negligible, as can be shown computa-
tionally. Therefore we replace the upper limit for ¢ in (2.14) with 7. The
value of T, which is chosen so that it does not affect the calculation of 7,
varies with g and & For example, for the computations of 7 shown in
Fig. 4, we used T=42 for £ =0.01 and ¢=0.0001, and T=27 for u=0.02
and ¢=0.001. In general, the value of T was chosen so that increasing T
by one would change 7 by less than 0.05%. For example, for £ =0.01 and
¢=0.0001, the difference between 7 obtained with 7=42 and 7 with 7=43
1s less than 0.005, which is 0.02% of T~ 27.



808 Kuske

3. FITZZHUGH-NAGUMO EQUATION WITH NOISE

Now we apply the methods used in the previous section to study the
FitzHugh-Nagumo equation with noise,®- ¢

du=>b(v—yu) dt

do=(—fv) —u+1(1))dt +./2 e dW 1)
where a, b, and y are positive constants, f(v)=v(v—a)(v—1), and W is
standard Brownian motion. This system models the propagation of nerve
impulses along the giant axon of a squid, and qualitatively captures the
features of the Hodgkin—Huxley model. Here v is the potential across the
membrane of the axon and u is a recovery current whose behavior follows
that of v with a time lag (see, e.g., ref. 10 for further discussion of the
model). We study the case in which the applied current increases slowly in
time, I(7)=ut for u<<1, with small fluctuations in the applied current
modeled by ﬂ edw.

We briefly describe the delay in the transition for this model. When
the applied current is a constant (¢ =0 and /=constant) the system goes
to either a steady state, for /< I,, or an oscillatory behavior, for 7> I,. The
value I, is the Hopf bifurcation point. When the applied current is slowly
increased through this bifurcation point I, (I(z)=ut, u<<1, ¢=0), the
transition from the steady state to the oscillatory state is delayed, that is,
it occurs for a value of 7 significantly larger than /.. Even when the fluctua-
tions are small, 0 <e<<pu, the delay in the transition is significantly
reduced. Figure 5 compares the deterministic (¢ =0) and random (0 <& << u)
solutions of (3.1). Note that the variable v makes the transition to the
oscillatory state before u, in both the deterministic and random results.

This reduction in the delay was observed for other types of fluctuations,
including sinusoidal oscillations studied in ref. 10 (/(¢) = ut + ¢ sin wt), and
fluctuations due to numerical noise, studied in ref. 9. In this paper we treat
the fluctuations as white noise, which yields (3.1) as a system of stochastic
differential equations. Then the corresponding Fokker—Planck equation for
the probability density p(u, v, ) is

pi=—(bo—yu) p),—((—f(v) —u+1(1)) p),+ &Py (3.2)

3.1. The Asymptotic Expansion

As in the study of the one dimensional model of Section 2, we
introduce local variables based on the assumption that for ¢<< |1
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Fig. 5. The solution of (3.1) for £ =0.001, a=0.2, »=0.05 and y =0.4. The solid line is the
deterministic solution (¢ =0) and the dash-dotted line is the noisy result (& =0.00001). Note
that both transitions occur for /= ut above the critical value /., but the delay in the case of
noisy fluctuations is significantly reduced.

the noisy dynamics will be initially “close” to the deterministic behavior,

gEv— V(t)
&
(3.3)
u—U(t)
nE————
e

where V(t) and U(t) are the solution of (3.1) with ¢ =0. Substituting (3.3)
in (3.2) yields an equation for the transformed joint density p({, #, ¢),

=D+ (S V) Ltn) pe—(bL=byn) p,+(['(V)+by) p+ O(e) (3.4

using the equations for U(¢) and V(¢). Then we look for a leading order
solution of the form

k
e n~cen| S0 wn oS g o] 69)
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or, in terms of the original variables u and v,

plu .1y~ Cexp| 59 0= Vi) =5 (u— U0 )
A v+ L o v+ e ) 500
& & &
(3.6)

Substituting (3.6) in (3.4) yields a system of ordinary differential equations
for g(1), h(t), k(t), q(n), r(t), and s(¢). The equations to leading order are

= 20— ¢(0) S(0) + b
)= —h(1) £'OVE) — gl0) — byh(1) +28(1) h(1) + Bk(1)
k)

=h%(t)—h(t) —byk

2
q'(1)= —2g(t) q(1) +q(2) f(V'(2)) —br(1)
r(t)= —2h(t) q(t)+ q(t) + byr

(

s'(0)=—g(t)+q*+ f' (V1)) + by

In Fig. 6, we show the numerical solution for g(¢), h(z), and k(). The
initial condition for these functions is found from the initial condition for
p(u, v, t). We take a distribution which is concentrated around }(0) and
u(0),

(u—U(0))> (v—11(0))

1
0)~—o — - 3.8
p(& 1, 0) e P 22 252 (3.8)

so that g(0)=1, k(¢)=1, h(0)=¢g(0)=r(0)=0, s(0)=0. Since we start
with ¢(0) =r(0) =0, these terms remain 0.

We solve these equations, focusing on the region in which g(¢), A(?),
and k(t¢) approach 0. These coefficients play a role analogous to that of g(¢)
in Section 2. When these quantities are small, there is a larger probability
that the noisy dynamics differ significantly from the deterministic dynamics.
That is, the density is less concentrated around the deterministic dynamics
when g, i, and k are small.

It is worthwhile to note that these equations are not solved for all
time. One could expect from (3.7) that there is singular behavior of the
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Fig. 6. The solution for /g(1)/(\/2¢), /h(1)/e, and /k(1)/(\/2¢) from (3.7), with

n=0.001, a=0.2, y=0.4, b =0.5. Note that g(z) approaches 0 faster than k(z). This is consis-
tent with the dynamics of (3.1), where v(¢) first makes the transition to the oscillatory state,
then later u does.

solutions at some time ¢ In fact this can be observed from the numerical
solution of these equations. However, this behavior is observed at times
after the interval in which the asymptotic approximation to the density is
valid. Therefore this behavior does not affect the approximation.

In Figs. 7 and 8 we compare the asymptotic approximation with
numerical results. These results show the change of shape in p(u, v, ¢) as the
process makes the transition from steady behavior to oscillatory behavior.
Note that the most dramatic change in p(u, v, t) is in the variable v, which
directly reflects that the process v makes the transition to the oscillatory
state first and then is followed by u. The comparison with the numerical
solution of (3.2) shows that the asymptotic approximation is valid into the
transition region.

In Fig. 8 the marginal density function,

q(v, 1) = JOO plu, v, t)du (3.9)

— 00

is compared with the numerical result. Even though there is a large change
in concentration of ¢(v, z), there is good agreement with the numerical
result well into the transition region. In Section 2, Fig. 3, there is a
noticeable difference in the tails of the asymptotic and numerical solutions
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Fig. 7. Comparison of the analytical results for p(u, v, t) with numerical results for =375
(left column) and =390 (right column). The top row shows the surface plots of the density
(3.6), and it is clear that the shape of the density changes as the transition time approaches.
In the middle row are the corresponding contour plots of these density functions. The third
row shows the contour plots for the numerically computed solutions for the density functions,
which show good agreement with the asymptotic approximation. Here the parameters are
1=0.001, £¢=0.00001, a=0.2, y=0.4, b=0.05.

for times far into the transition regions. The main difference between the
results in Section 2 and Section 3 is the type of transition in the underlying
deterministic dynamics. In the one-dimensional example (2.1) the transition
from y(z)~0 to y(t)~ i\//; occurs in such a way that |y(¢)| exceeds

ut only by the small fluctuations due to the noise. Then the gradient of
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Fig. 8. Comparison of the analytical (solid line) and numerical results (dash-dotted line) for
the marginal density ¢(v, ) for £ =0.001 and ¢=0.00001, ¢ =0.2, y =04, b =0.05. The dif-
ference between the asymptotic and numerical results is negligible, even for times well into the
transition region.

the density sharpens at y = i\/ﬁ as the density becomes bimodal. In con-
trast, the transition for the FitzHugh—Nagumo model results in oscillations
with increasing amplitude, centered around the (unstable) steady state.
Then the density function is symmetric around this steady state, and the
symmetry of the Gaussian-type approximation (3.6) gives a better
approximation for p(u, v, t) and ¢(v, t) into the transition region for the
two-dimensional model (3.1). The approximation (2.11) also has this sym-
metry, but it does not reflect the dynamics of the one-dimensional model
(2.1) far into the transition region.

As in Section 2, we compute 7, the expected time until transition, using
the asymptotic result for p(u, v, ¢). In this application 7 is the expected time
until the process makes the transition from the steady state to the
oscillatory state. The criterion we use for this transition is that the
stochastic process v(¢) differs by an amount v, from the deterministic pro-
cess V(t). The transition is defined only in terms of v since u is virtually
slaved to v, with a time lag (see Fig. 5). In terms of the density function,

ro IV([HU{ p(u, v, t) dv du a’tzjoC fymﬂv

o0
fzf
0 —o V(1) —v, 0

Here v, is chosen sufficiently large so that for |v — V(¢)| > v, the dynamics
are not significantly influenced by the noise. As in the one-dimensional

q(v, t) dv dt (3.10)

V(t) —v,
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500 b

Fig. 9. Comparison of 7 for the deterministic and stochastic dynamics of (3.1). The *’s
correspond to the deterministic dynamics, where 7 is the minimum time such that the oscilla-
tions are larger than v, when ¢ =0. The O’s correspond to 7, as calculated using (3.10). The
O’s give the computed values of the average time until |v — V(7)| > v, from 40,000 realizations
of (3.1). Here v, =0.005, ¢ =0.00001, ¢ =0.2, y =0.4, and b= 0.05. The solid line is the critical
value /., which is the bifurcation point in the case of = constant.

example, this choice of v, can be quantified by relating it to the initial con-
dition for the problem where the deterministic and stochastic dynamics
remain close, that is, both the stochastic and deterministic solutions make
the transition at the same time. Also, the integration in ¢ is truncated at a
value T which does not affect the calculation of 7, as discussed in Section 2.
For example, to calculate 7 for x4 =0.003 (see Fig. 9) we replaced the upper
limit in (3.10) with 7’=175. Then increasing T by one changes 7 by less
than 0.01%. This criterion was also used for the choice of T for the other
values of u. The results for 7 as computed from (3.10) are compared to
simulations and the deterministic dynamics in Fig. 9.

4. CONCLUSION

In this paper we give an asymptotic approximation for the probability
densities for problems with noisy delay bifurcations. In these problems the
noise significantly reduces the delay in the transition. In particular we give
results for a steady bifurcation problem as well as the noisy FitzHugh—
Nagumo model, which has a Hopf bifurcation. The approximation for the
probability density is based on a Gaussian-type ansatz which is motivated
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by the dynamics. It is easily interpreted in terms of regions of time and
space in which the noisy process differs significantly from the deterministic
process, and can be used to determine the dependence of the process on
the size of the noise, the initial conditions, and other parameters in the
problem. The form of the density reveals the regions of validity of the
approximation. Since it is valid prior to and during the transition of the
process, we use it to give parametric results for the mean transition times
of the process.

The ansatz for the density reduces the problem to that of solving a
system of ordinary differential equations, which is much less computa-
tionally intensive than either solving the the partial differential equation for
the density, the Fokker—Planck equation, or simulating many realizations
of the stochastic process. The asymptotic approach is general and can be
easily applied in other noisy bifurcation problems. It has also been applied
to problems with metastable dynamics®? and in problems where noise
changes chaos to nearly periodic behavior.'¥ In these problems small
noise has an O(1) effect on the dynamics and the probability densities can
vary in shape in both time and space.
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